SNUFA 2025 Abstracts
Click here for the full programme
Talk
- Space as Time Through Neuron Position Learning (Balázs Mészáros, James C. Knight, Thomas Nowotny, Danyal Akarca)
- Assembly-based computations through contextual dendritic gating of plasticity (Sebastian Onasch, Christoph Miehl, M. Maurycy Miękus, Julijana Gjorgjieva)
- Synaptic Plasticity Shapes Triplet Connectivity Motifs in Spiking Networks (Claudia Cusseddu, Dylan Festa, Christoph Miehl, Julijana Gjorgjieva)
- Spiking Differential Equation Solvers: A Minimal Framework for Dynamical Computation (Manoj N H, Avisha Mathur, Aryan Jain, Keshav Garodia, Veeranatesan S)
- Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays (Marissa Dominijanni, Alexander Ororbia, Kenneth W. Regan)
- Spiking neurons as predictive controllers of linear systems (Paolo Agliati, André Urbano, Pablo Lanillos, Nasir Ahmad, Marcel van Gerven, Sander Keemink)
- Emergence and maintenance of modularity in neural networks with Hebbian and anti-Hebbian inhibitory STDP (Raphaël Bergoin, Alessandro Torcini, Gustavo Deco, Mathias Quoy, Gorka Zamora-López)
Flash talk
- Memory capacity in spiking neural networks with fixed synaptic weight distribution (Aaradhya Vaze, Maayan Levy, Tim P. Vogels )
- Neuromodulation enhances dynamic sensory processing in spiking neural network models (AbdelQader AlKilany, Dan Goodman)
- Energy-Based and Transformer Models for Neural Circuit Modeling (Abolfazl HaqiqiFar, Reza Jafari)
- Asynchrony as a substitute for chaos in training ring spiking neural networks (Afroditi Talidou, Wilten Nicola)
- Single Spiking Neural Network with Neuromodulated Attractors for Adaptive Robotic Quadruped Gait Switching (Gabriel Torre, Juan Giribet, Sergio Lew)
- Exploring Information-Constrained Latent Spaces in Adaptive Spiking Neural Networks (Jhon Intriago, Pablo A. Estévez)
- Emerging assembly structures in trained spiking neural networks (Julia Gygax, Friedemann Zenke)
- Exploiting heterogeneous delays for efficient computation in low-bit neural networks (Pengfei Sun, Dan Goodman, Danyal Akarca)
- Neural Heterogeneity Enables Adaptive Encoding of Time Sequences (Raphaël Lafond-Mercier, Leonard Maler, Avner Wallach, André Longtin)
- Spikes can transmit neurons’ subthreshold membrane potentials (Valentin Schmutz)
Poster
- Information-Theoretic Graph Neural Networks for Modeling Brain Connectivity (Abolfazl HaqiqiFar, Majid Saberi, Reza Jafari)
- Probabilistic Inference of Precise Spiking Motifs (Adrien Fois, Laurent Perrinet)
- Noradrenergic-inspired gain modulation attenuates the stability gap in joint training (Alejandro Rodriguez-Garcia , Anindya Ghosh, Srikanth Ramaswamy)
- DelRec: learning delays in recurrent spiking neural networks. (Alexandre Queant, Ulysse Rançon, Benoit R Cotterau, Timothée Masquelier)
- Anticipation in Multi-Agent Systems: A Dynamical Systems Approach to Self-Coordination (Ali Baokbah, Iran Roman, Ji Chul Kim, Edward Large)
- Dynamical Analysis Of The Role Of Synaptic Dynamics In Coupled Neural Populations (Ana Mayora-Cebollero, Roberto Barrio, Jorge A. Jover-Galtier, Carmen Mayora-Cebollero, Lucía Pérez, Sergio Serrano)
- A Unified Cross-Domain Software Framework for Interfacing with Biological, Virtual, and Neuromorphic Spiking Neuronal Networks (Andrey Formozov, Liam Keegan, Harald Mack, James S. Bowyer, J. Simon Wiegert )
- Hybrid Spiking–Kolmogorov–Arnold Networks (Andrii Krutsylo)
- Exploring the Inner Workings and Internal Representations of Predictive Coding Networks in Comparison to Usual Feedforward Neural Networks (Aslan Satary Dizaji)
- Stereo processing in the human brain in the light of the superposition theory (Bayu Gautama Wundari, Ichiro Fujita, Hiroshi Ban)
- Neuronal heterogeneity of normalization strength in a circuit model (Deying Song, Douglas Ruff, Marlene Cohen, Chengcheng Huang)
- Quantum-Inspired Neuromorphic Modeling of Action Potentials at the Edge for Bio-Inspired AI (Chitaranjan Mahapatra, Ashish Kumar Pradhan)
- Low dimensional dynamics of a sparse balanced synaptic network of quadratic integrate-and-fire neurons (Denis S. Goldobin, Maria V. Ageeva)
- Causal pieces: analysing and improving spiking neural networks piece by piece (Dominik Dold, Philipp Petersen)
- Distributed engrams enable parallelized orthogonal computations within and across brain regions (Douglas Feitosa Tomé, Chenchen Shen, Basile Confavreux, Madhumathan Mukherjee, Ying Zhang, Dheeraj S. Roy, Tim P. Vogels)
- A local homeostatic STDP rule for stable dynamics and stimulus selectivity in recurrent spiking neural networks (Dylan Festa, Claudia Cusseddu, Divyansh Gupta, Julijana Gjorgjieva )
- Hardware multichannel time encoding with leaky integrate-and-fire neurons (Alessandro Macuglia, Giacomo Indiveri)
- Solving constrained minimax problems with spiking neural networks (Guillermo Martín-Sánchez, William F. Podlaski, Christian K. Machens)
- A genetic algorithm for self-supervised models of oscillatory neurodynamics (Jason Sherfey, Andre Bastos)
- Inferring response times of perceptual decisions with Poisson variational autoencoders (Hayden R. Johnson, Anastasia N. Krouglova, Hadi Vafaii, Jacob L. Yates, Pedro J. Goncalves)
- Deep-learning-assisted simulation of a cortical circuit: Integrating anatomy, physiology and function (Shinya Ito, Darrell Haufler, Javier Galván Fraile, Kael Dai, Joe Aman, Omid Zobeiri, Guozhang Chen, Claudio Mirraso, Wolfgang Maass, and Anton Arkhipov)
- Addressing the Comparability Crisis in Adaptive SNNs (Jhon Intriago, Pablo A. Estévez)
- Hyperparameter Estimation to Improve Spiking Neural Networks’ Learning (Jhon Intriago, Pablo A. Estévez)
- A spiking implementation of the incentive circuit model for mushroom body learning and behavior (Jordan Watts, Barbara Webb)
- On the geometry of recurrent spiking networks (Josue Casco-Rodriguez)
- Versatile Learning in Neural Networks Without Synaptic Plasticity (Kai Mason, Sonia Sennik, Claudia Clopath, Aaron Gruber, and Wilten Nicola)
- Reducing computational cost in spiking networks with a periodic reset model (Marco Tasca, Julia Gygax, Friedemann Zenke)
- Novel Deep-RL Method for Three-Factor Based Automata (Michael Tarlton)
- Exploring the Generalizability of Directly Connected Hybrid Spiking-Nonspiking Neural Networks (Nalini Ramanathan, Maren Eberle, Erdem Varol)
- Evolving reward-driven synaptic learning rules in Spiking Neural Networks for simple RL tasks (Napat Sahapat, Yeshwanth Bethi, Sergio Chevtchenko, Saeed Afshar)
- Demonstrating Universal Approximation with a Biophysically Faithful Hodgkin–Huxley Engine (Nicholas Windley, Desmond Atkins )
- Mean Field Analysis of a Stochastic STDP model (Pascal Helson, Etienne Tanré, Romain Veltz)
- Robustness of Spike-Based Computations Across Temporal Resolutions (Prakriti Parthasarathy, Timothy O’Leary)
- BurstFormer: a spiking Transformer trained with biologically inspired learning rules (Xingyun Wang,Richard Naud)
- Thalamic Hyperconnectivity and Functional Signatures in fMRI Connectomes of Autism Spectrum Disorder (S M Shayez karim, R S Rathore)
- Multiple-Output Spiking Neurons with Generalized Reset Feedback Mechanisms (Sanja Karilanova, Subhrakanti Dey, Ayça Özçelikkale)
- EFLOP: a sparsity-aware metric for evaluating computational cost (Simon Narduzzi, Friedemann Zenke, Shih-Chii Liu, L Andrea Dunbar)
- Detection of spiking motifs of arbitrary length in neural activity using bounded synaptic delays (Thomas Kronland-Martinet, Stéphane Viollet, Laurent Perrinet)
- Learning in Spiking Neural Networks: A Backpropagation-Compatible Architecture Using Conductance Neurons (Navid Akbari, Kai Mason, Aaron Gruber, Wilten Nicola)
- e-prop based SNN for handwritten character generation (Marc Pomar, Aksel Serret, Alicia Fornes, Xavier Otazu)
- State-space models can learn in-context by gradient descent (Yudou Tian, Neeraj Mohan Sushma, Nicolo Colombo, David Kappel, Anand Subramoney)